【导语】比的应用就是把比运用到生活中去。免费准备了以下内容,供大家参考。
篇一
教学内容:
北师大版六年级数学上册第55页、第56页。
教学目标:
1、能运用比的意*决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。
3、培养学数学的兴趣,养成良好的思维品质。
教学重点:
理解和掌握按一定的比进行分配的意义,并进行实际应用。
教学难点:
把比熟练地转化成分数,将分数知识横向迁移。
教学准备:
多媒体课件。
教学过程:
一、复习牵引(课件出示)
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某班男生和女生的人数比是5:4”,从这组比中,你能推断出什么信息呢?(课件出示题目)
学生自由发言,预设推断如下
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的(),女生是全班的()。
3、以男生为单位“1”,女生是男生的(),全班是男生的()。
4、以女生为单位“1”,男生是女生的(),全班是女生的()。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)
二、情境导入,引出课题(课件出示)
昨天我和王老师合伙买福利彩票,我出了30元,王老师出了50元,结果我们中了一个二等奖,奖金8000元。我想对半分,各分4000元,王老师说这不公平,你们认为呢?怎么分奖金才合理呢?
三、合作探索,解决矛盾
1、你能帮老师解决这个问题吗?请试试看,可以小组内交换意见、讨论想法。
2、说以说你的想法。组织反馈,逐一展示学生解题思路。
3、我们分到的奖金是否合理,该怎样检验?(两个数量和要等于8000,出资的比是3:5或5:3)
4、小结:像这样把8000元彩票奖金按照出资多少来进行分配的情况叫做按比例分配。(板书:按比例分配)
(出示课题:比的应用)
四、自主探索
1、课件出示教材(1),把一筐橘子分给大班和小班,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
学生商量分法,得出:按大班和小班的人数来分比较合理。
2、大班人数和小班人数的比是3:2 学生分好后,交流分法,填表完成。
3、如果有140个橘子,按3:2分,可以怎样分?你会分吗?试着分一分。
学生试做。
4、与同学交流分的方法。分组讨论疑点,并试着在组内解决。
四、交流方法,老师精讲
1、班内交流,老师答疑
三种方法
(1)、方法一:借助表格分。
(2)、方法二:画图
发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。
140个
140÷(3+2)=28 大班:28×3=84(个)
小班:28×2=56(个)
追问:为什么要“140÷(3+2)”?
(3)、方法三:根据分数的意*题。先求出一共分成几份,再求出大班和小班分的个数分别占橘子总数的几分之几,最后根据分数的意*题。
3+2=5 140× = 84(个)
140× = 56 (个)
答:大班分84个,小班分56个,比较合理。
2、以上几种方法你最喜欢哪种?说明理由。引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶根据分数乘法的意*题。
五、巩固练习,深化认识
1、小清要调制2200克巧克力奶,巧克力和奶的质量比是2:9。需要巧克力和奶各多少克?
2、 3月12日是植树节,学校把种植60棵小树苗的任务分配给602班和603班,两班都是43人。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?
3、完成教材第56页练一练第3题合理搭配早餐。
六、总结评价
1、回顾这节课所学的知识,谈谈收获。
2、布置作业。
板书设计:
比的应用
3+2=5 140× = 84(个)
140× = 56 (个)
答:大班分84个,小班分56个。
知识点
1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?
例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?
题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人
第二步求男女生:男生:5×5=25人 女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?
例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?
题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:25÷5=5人
第二步求女生: 女生:5×7=35人。 全班:25+35=60人
3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?
例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?
练习题
一、填空
1、两个数()又叫做两个数的()。
2、9比5记作(),()是前项,()是后项,比值是()。
3、如果A∶B=C,那么A是比的(),B是比的(),C是比的()。
4、4∶5=();8/7=()∶()
5、 某班有男生25人,女生20人。
(1)男生人数与女生人数的比是()。
(2)男生人数占全班人数的()男生人数与全班人数的比是()。
(3)女生人数占全班人数的(),女生人数与全班人数的比是()。
6、 4∶5的前项扩大4倍,要使比值不变,后项应增加()。
7、 圆周长与它的面积的比是()∶()
二、判断
1、比值是0.8的比只有一个。()
2、一个比的比值是4.2,如果它的前项和后项同时乘5,比值还是4.2。 ()
3、除数不能为0,分母不能为0,比的后项也不能为0。 ()
4、4∶20化成最简单的整数比是5。 ()
5、比的前项加上2,后项也加上2,比值不变。 ()
6、3/5可以读作五分之三,也可以读作三比五。()
7、配制一种盐水,在200克水中加入20克盐,盐和盐水的比是1∶10。()
8、若甲数与乙数的比是3∶4,则乙数是甲数的4/3倍。()
三、应用题
1、公园里柳树和杨树的棵数比是5∶3,柳树和杨树一共有40棵。柳树和杨树各有多少棵?
列式:_______________________()
答:柳树有()棵;杨树有()棵。